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1.  Introduction

Data acquisition distributed over time and distance can be difficult. Consider the following scenarios:

• Your task is to collect data and report some simple statistical tests periodically over a long 
period of time. This is trivial, but only if the data acquisition and logging agree on what 
periodically means. If the rates for sampling and the rates for data collection and logging differ 
by just a few parts per million, over the course of millions of samples, the disparity in rates 
accumulates into a serious problem.

• You can avoid rate problems by having the centralized data collection poll the data acquisition 
devices for data. But if you do this, you lose continuity of measurements. 

• A process protocol must be implemented for polled or triggered data collection, with the 
centralized station issuing requests and then waiting for responses. Remote stations don't know 
what they are supposed to do until the request arrives, so they tend to spin idle a lot of the time. 
And whatever they do after a request arrives, it can't be very complicated or the response cannot 
be returned quickly. 

• For physically distributed stations, it is difficult to align data sets and determine what events 
appear in the records for each station. If they are going at the same rate, why not just count 
sampling intervals? That only works if the sampling is truly exactly at the same rate.  

• Activity at all stations can be kept at the same pace by driving every station with the same 
reference time signal. However, the signals typically available to be distributed over a wide area 
are either very complicated (e.g. IRIG-B receivers) or very slow (e.g., a distributed digital 
timing pulse).  The rates of these systems (typically 1 pulse to 100 pulses per second) are very 
often not the timing intervals you want for your sampling hardware operation, so an additional 
timer is involved somehow, and now you have synchronization problems. 

Difficulties like these can be solved by applying the Time Base Synchronization Module. The purpose 
of this module is to enable you to:

1. Use the hardware clock at the natural rate for hardware operation, but synchronize the data 
(rather than the hardware) to an external reference clock. 

2. Operate the data acquisition at any rate you want, specified relative to the external reference.

3. Accept simple voltage or digital pulse signals.

4. Accept broadcast timing signals from sources such as IRIG-B or GPS.

In effect, your signals are recorded as if the sampling were driven directly by the external time base, 
but at an arbitrary rate otherwise unsupportable by that time base.
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Internal timing and external reference timing

An xDAP system provides you with many configurable sampling options.  To guarantee that the timing 
is accurate in all of these configurations, they are governed by an on-board, crystal-controlled digital 
oscillator operating at a single fixed rate. To give the illusion of  “configurable sample timing” a very 
fast timer rate is used, and all configurable hardware intervals are then exact multiples of this hardware 
interval.  Once synchronized, any timing skew between data acquisition activities remains rigidly fixed. 
We call the user-adjustable internal timing that the xDAP uses the sampling time. It is configured by 
specifying the sampling SCAN interval. Thus, all sampling activity is governed by the   sampler timing 
clock, with equal time intervals between samples as determined by the sampler clock and scan 
configuration. 

When you use an external time base signal, you cannot depend that it will stay aligned with the internal 
sampling clock over an extended time. (Even  international timing standards based on an atomic clock 
or on planetary rotation diverge from each other given sufficient time.) The best you can do is observe 
differences and account for them. Then you can relate the internal and external timing, even if you can't 
force them to be the same. 

A simple model can account for the differences between the internal DAP and external time base 
timing. 

1. The sampling starts at some position relative to the reference time base. A constant offset term 
describes this location.

2. The time base and the DAP sampling rate both run at known rates. But the time base is 
considered absolutely accurate, while the actual sampling rate can differ a small amount from 
its nominal rate. The primary reason for the rate discrepancy is a tolerance on the absolute 
accuracy of the sampling timer chips, with variations typically in the tens of parts-per-million.

For example, if the sampling rate is nominally 10000 samples per second, an xDAP system might 
execute 10000.129 sampling cycles per external time base second on the average. This is not a big 
discrepancy, but after many thousands of seconds pass, eventually the hardware sampling will delivers 
one more full sample than would be expected according to the external time base. The mapping model 
accounts for the observed differences.  

Once the relationship is established, it is possible to calculate equally-spaced intervals within the 1-
second reference timing pulses, then map these positions back to the corresponding positions in the 
hardware sample stream.
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Sample and fractional-sample time intervals

Sample counts are presented to a precision of 1/1000 sample. If the hardware clock were perfect, 
samples would occur only at the ends of sampling intervals, so concerns about fractions of sample  
interval would be irrelevant.  Suppose for example that there are 10000 samples captured per second. 
Then  those 10000 samples would be captured exactly on 100 microsecond time intervals, aligned 
perfectly to the sampler clock edges.

When time intervals are determined relative to the external time base, these intervals are not restricted 
to those locations where the sampler hardware performs its sampling. Then it can be relevant to 
consider fractions of a sample to reach a location at an intermediate position between samples captured 
directly by the sampling clock. 
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2. Installing the Time Base Synchronization module

It is assumed that you have used the Standard or Professional edition of the DAPtools software, and run 
its installer program to place a copy of the Time Base Synchronization module on your local 
disk drive.

To install the module, run the “Data Acquisition Processor” applications from the Windows control 
panel. Go to the Modules tab. Click on DAPL 3000 in the display window. In the lower left, click the 
Add button. Leave the default options in the checkboxes on the left side. In the lower right, click the 
Browse button, and navigate in the tree dialog to locate your copy of the tbtsm.dlm module. When 
you click the Open button, you will be returned to the Modules page. Click OK. The module will be 
loaded to your xDAP system. In addition, its configuration will be noted in the Windows registry, and if 
you shut down Windows or your xDAP unit, the tbtsm.dlm module will be reloaded automatically 
at future restarts.
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3. Observing Reference Time
To base data samples on an external clock, you still need to capture samples, and that means that you 
must configure an input sampling process. One of the things that this sampling process will do, to 
establish the association between its timing and the time base, will be to sample the reference timing 
signal and watch for changes in that signal. This processing performs a timing analysis to watch the 
number of samples occurring per reference timing interval. For perfect rate alignment, this number 
would be an infinitely repeating pattern. Any break in this pattern provides information about disparity 
between the nominal and actual sampling rate. Not only does this tracking provide accurate estimates, 
but it produced dynamic corrections if any long-term relative drift in the sampling rate is detected.

The timing source can be one of the following:

• a once per second digital timing pulse isolated from an IRIG-B time reference

• a once per second digital timing pulse captured by a GPS receiver

• an N pulse per second rectangular wave pulse train generated by an arbitrary digital time source

As with all sampling, there is uncertainty in the exact positions of the samples. You can see the arrival 
of a reference timing pulse shortly after it happens, but you can't see the arrival of that pulse shortly 
before it happens, so this uncertainty is not balanced.  To keep this timing uncertainty low, you want the 
hardware sampling to run at a significantly faster rate than the reference clock. As long as sampling 
does not approach absolute limits that overload the processor, there is no harm from going fast. 

Time-base analysis using IRIG-B
To perform a timing analysis on an IRIG-B time signal, route the signal from your IRIG-B receiver to 
an available digital input pin. Or alternatively, if you do not have or do not want to use a digital input 
pin, digital logic levels are perfectly acceptable as an analog input, and you can use one of the xDAP 
analog input channels to receive the IRIG-B signal. The signal must be in the “level shift” digital logic 
form, not an amplitude modulated carrier form. The information passed to an IRIGB processing 
command includes the following.

• The sample stream captured from the IRIG-B signal

• The nominal sample rate of the hardware sampler

The pulse rate of the IRIG-B signal is guaranteed by timing standards.

The processing strips the IRIG-B signal into two parts. 

1. A timing analysis pipe receives information about the absolute start time, if known, and the rate 
mapping between sampling time units and reference time-base units.

2. Optional raw message bits as extracted from the raw IRIG signal can be routed to other 
processing one packet at a time, as received.

Time-base analysis using GPS
GPS receivers provide two kinds of signals, an accurate 1 pulse-per-second timing signal, and a serial 
data stream (typically RS-422) delivering various general-purpose navigation information. Unlike 
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IRIG-B, the timing and message signals produced by the hardware arrive via separate lines. 

• A clean, “rectangular pulse” logic signal indicates the start of each 1-second timing interval.

• A serial line presents supplementary navigation message texts modulated within the original 
pulse, but delivered via a separate signal pin.

Since the navigational data is not embedded with the output timing data as in the case of IRIG-B, the 
Time Base and Synchronization Package does not process the encoded serial data. The timing output is 
treated as a typical serialized digital signal.

To obtain the GPS information, route the GPS timing output signal to an xDAP digital input pin.  Or 
alternatively, if you do not have or do not want to use digital input pins, the digital logic signal can be 
processed as an analog input. 

Time-base analysis using a precision oscillator
While 1-second intervals are very helpful for relating external timing pulses to “true” elapsed time 
according to the time base, mathematically, the pulse rate of the reference signal can be something else, 
provided the rate is accurate and known exactly.  For example, some IRIG receivers do not provide the 
original IRIG signal, but instead provide ordinary digital pulse sequences synchronized to the IRIG 
timing. You do not need to worry about how these schemes work, or how the oscillator determines the 
timing intervals, as long as the timing rate remains steady and accurate. The analysis must include an 
extra parameter for the configurable timing rate.
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4. Resampling

Timing analysis will establish the correspondence between positions relative to the observed time base 
and samples captured by the on-board digitizer. Resampling can apply that information to deliver 
sample values aligned with the reference time base, which could occur at fractional sample positions 
given samples captured on the hardware sampling clock.

If the sampling rate happens to be an exact integer multiple of the desired reference-based rate, and is 
phase-aligned to the reference clock signal, you have the ideal situation. Every desired sample location, 
as referenced to the time base, then aligns perfectly to one of the samples captured directly by the 
hardware. For this, resampling can be as simple as discarding any extra sample values you don't need. 
But in general, slight rate and “phase” discrepancies will mean that there is no such perfect alignment. 
What happens when the desired positions relative to the time base no longer align exactly to any of the 
many available samples? This is the problem of  signal reconstruction or interpolation. Fortunately, 
this is one of the best understood aspects of digital signal processing. Signal sample values can be 
calculated to a high degree of accuracy at any location, at or between previously measured sample 
locations. While not perfect, the accuracy of this reconstruction is so good that you can't distinguish 
these errors from the errors that happen anyway when continuous analog measurements are rounded to 
the nearest 16-bit integer values by digitizer hardware. For more information about the DSP 
calculations, see Appendix A. 

Once resampling capabilities are available, it is no longer necessary for sample locations to be dictated 
by the hardware. One second intervals can be divided into any desired fractions of a second. Those 
calculated positions can be mapped to locations in the hardware sample stream, and resampling applied 
to evaluate each of these locations. The computations are fast. The sampled values that you get in this 
resampled stream will be indistinguishable from samples directly driven by hardware synchronized to 
the external timing signal. The difference with resampling is that you don't need complicated and 
temperamental hardware devices such as clock multipliers, digital counters, and phase-locked loops. 
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5. Application Examples

This section describes some typical applications using the Time Base Synchronization Module.
Each application described in this section has a corresponding DAPstudio configuration file. You can 
begin configuring new applications by connecting real signals, running  these applications to verify that 
they work, and then incrementally adapting them. Or if you prefer, you can use the DAPstudio Save 
DAPL option to export the configuration in a text script file form, which can then be modified or used 
directly within any software environment.
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Application 1: Alignment to power frequency rates 

The goal is to measure voltage and current in the three phases of a Y-connected 3-phase power 
transformer. Current and voltage for each phase are measured simultaneously. Also, to facilitate 
analysis of phase imbalance, the voltage from the Y-connection point of the transformer to a common 
reference ground is also measured. (Current in the common-ground path must equal the algebraic sum 
of currents from the three phases, and need not be measured.)  

To get an accurate measurement that is less influenced by noise, lots of samples are taken, with the 
clean data streams to be reduced later. The measurements are supposed to be based on the North 
American standard frequency, 60 Hz.  1000 samples per cycle would yield a scan rate of  60000 
samples per second on each channel. 

The xDAP can get close to the desired frequency, but not exactly right. To get 1000 samples per 1/60 
second, the SCAN interval must be 16.6666666667 microseconds between scans. With a resolution of 
20 nanoseconds in specifying the scan interval,  the best available choices for the xDAP are 16.66 or 
16.68 microseconds. Thus, the number of samples collected to span 2 power cycles will be off by one 
sample short or excess, depending on the configuration.  This is not random, and it doesn't take long to 
accumulate what appears to be a significant phase shift between sampled data and the actual 
waveforms.  

Using the Time Base and Synchronization module and a time base reference that produces 60 timing 
pulses per second, you can obtain exactly the sample rate you want, 1000 samples per waveform cycle, 
even if the waveform cycle is somewhat longer or shorter than expected. 

Solution: Connect the 7 measurement channels and the time base channel to xDAP input signal lines 
that are sampled simultaneously. Choose a sampling rate that is simple but in the general neighborhood 
of the rate you want. In this case, sample with a scan interval of 12.8 seconds, corresponding to 
78125.0 samples per second on each channel. The timing signal swings between -5V and +5V, which 
will digitize from -16384 to +16384. Configure the OSCSCAN command to observe the timing rates. 
Use the TBRESAMP command to obtain the signal values at equal time intervals 60000 times per 
second aligned to the time base. 
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DAPL configuration:

idefine MslInput 
   channels 8
   set IP0 d0      // Seven measurement channels
   set IP1 d2      
   set IP2 d4
   set IP3 d6
   set IP4 d8
   set IP5 d10
   set IP6 d12
   set IP7 d14     // Time base channel
   scan  12.80    
end

pipes  pTimeAnalysis  double
constant  voltlow     word    = -16384
constant  volthigh    word    =  16384

// Nominal sample rate 78125 samples per second
constant  smpinterval double  =  12.800
// Reference timer rate 60 cycles per second
constant  refinterval double  =  16666.66666666666
// Resample rate 1000 samples per reference timer cycle
constant  newinterval double  =  16.66666666666666

pdefine aligning
  // Analyze the timing reference signal
  OSCSCAN(IPipe7, voltlow, volthigh,  \
     smpinterval, refinterval, pTimeAnalysis)
  // Evaluate signal at the desired sample locations
  TBRESAMP(IPipes(0..6),7, pTimeAnalysis, newinterval, $BinOut)
end

See the  TBSApp1.dms application file for DAPstudio.
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Application 2: Alignment to iDSC sampling rates 

iDSC boards provide sampling at certain fixed scan rates. For example, if a desirable sampling rate is 
48000 samples per second on each channel, you can't do that. The nearest sampling rates the iDSC 
supports are 38400 and 51200 samples per second. 

Suppose that you have an existing application that depends on the iDSC sample rate of 51200 samples 
per second. You want to replace this application with an xDAP application that runs at exactly the same 
sample rate. The 51200 samples per second rate corresponds to 19.53125 microseconds per scan. If you 
could match that rate exactly,  the careful analysis methods in your software would remain valid. 
However, the xDAP hardware can directly support a scan interval of 19.52 or 19.54 samples per 
second. These rates differ from the ideal approximately 0.05%.  The difference isn't big, but over the 
course of many data blocks, it soon accumulates into a serious discrepancy. 

Using the Time Base and Synchronization module with an arbitrary time base oscillator, you can obtain 
sampling at arbitrary rates that match iDSC rates but otherwise could not be directly supportable by the 
hardware SCAN command and an xDAP system. 

For this example, there are eight signals that must be sampled simultaneously at the 51200 samples per 
second rate on each channel, matching the iDSC board. These channels are measured simultaneously. 
An additional analog signal channel is used to bring in the precision oscillator signal. 

Solution: This assumes an xDAP model that samples 8 channels simultaneously. Connect the signal 
measurement channels to pins D0, D2, … , D14. The time base signal connects to input pin D1, and 
measurements of this channel alternate with the measurements of the other channels. Choose a SCAN 
interval of  10.0 microseconds to capture all of the measurements, including both the signal and the 
timing.  This rate is arbitrary but faster than the desired interval of 19.53125 microseconds per scan. 
The timing signal swings between almost 0V and almost +5V, represented as 0 to 16000 converter 
counts. The precision time base oscillator provides 1000 timing pulses per second. The 10 microsecond 
scan interval is plenty fast to observe the 1000 microsecond timing pulses without difficulty, providing 
a high-resolution signal to the OSCTIME command. Use the results of the timing analysis to locate the 
signal values at equally spaced time intervals, 51200 times per second.
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DAPL configuration:

idefine MslInput 
   channels 10
   set IP0 d0      // Eight iDSC-like signal channels  
   set IP1 d2 
   set IP2 d4
   set IP3 d6
   set IP4 d8
   set IP5 d10
   set IP6 d12
   set IP7 d14
   set IP8 d1      // Time base channel
   set IP9 d3      // unused
   scan  10.0    
end

pipes  pTiming  double

// Timing oscillator signal levels
constant  Vlow     word    =  0
constant  Vhigh    word    =  16000

// Nominal sample rate 100000 samples per second
constant  smpinterval double  =   10.0
// Reference timer period for 1000 Hz, in microseconds
constant  refinterval double  =  1000.00
// Resample interval to match iDSC:  52000 samples/sec rate
constant  newinterval double  =  19.53125

pdefine aligning
  // Analyze the timing reference signal
  OSCSCAN(IPipe8, Vlow, Vhigh, smpinterval, refinterval, pTiming)
  // Evaluate signal at the desired sample locations
  TBRESAMP(IPipes(0..7),8, pTiming, newinterval, $BinOut)
end

See the  TBSApp2.dms application file for DAPstudio.
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Application 3: Alignment to digital audio rates 

Audio signals are often recorded at 48000 samples per second (or multiples of that rate). The eventual 
goal is often to reduce that oversampled data by frequency-limiting smoothing, followed by a 
decimation, to yield a  final rate of 44100 samples per second for digital audio recording. This is tricky 
enough, but if multiple tracks from different sources are to be mixed, the rate and phase must remain 
very stable and accurate in every signal channel, or different sources will be out of phase with each 
other when played back, producing strange auditory effects.

One common difficulty is that the common recording rates are not exactly compatible. For example, if 
the signal is originally sampled at 48000 samples per second, it requires a reduction by factor  0.91875 
to achieve a final rate of 44100 samples/second. This is a rather awkward ratio. 

Using the Time Base and Synchronization module, you can use the 44.1 kHz, 96000 kHz, or any other 
sampling frequency for your reference timing.  We will show how a stable and accurate  A 440  tuning 
oscillator can be used to produce the desired sampling rates. 

Solution: The time reference is provided by a very accurate and stable 440 Hz tuning reference 
oscillator.  First capture the data at a rate somewhat higher than the required intermediate rate of 88200 
samples per second. The OSCSCAN command performs the timing analysis, and the TBRESAMP 
command reduces the data rate to exactly 88200 samples per second.  Apply a digital lowpass filter that 
cuts off any frequencies above 22 kHz in the sampled data, and then there is no aliasing or loss of 
information when reducing to the final 44100 samples per second audio rate.  

The original samples are captured by the hardware at intervals of 6.00 microseconds.  The intermediate 
88200 samples per second are at intervals of 11.33786848 microseconds. The accurate 440 Hz timing 
signal period is 2,272.727272 microseconds.  

The reference time signal is sinusoidal; this is not what you want for the OSCSCAN command timing 
analysis, which expects a digital  (two-level) signal.   However, if the waveform signal is a very 
accurate high-level voltage signal, receiving it with an additional gain of 20 results in a severely 
“clipped” data set that looks very much like a digital waveform. This is not ideal, but sufficient as a 
timing reference signal.  

The digital filtering is done using the FIRFILTER command, as provided by the DAPL system, to cut 
off frequencies above 22 kHz, while simultaneously decimating the rate to the final target rate of 44100 
samples per second.
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DAPL configuration:

idefine MslInput 
   channels 3
   set IP0 d0        // First audio channel  
   set IP1 d2        // Second audio channel
   set IP2 d4  20    // Time base 440 Hz channel, with gain
   scan  6.0    
end

pipes  pTimeAnalysis  double
pipes  pOversamp  word
pipes  pOversamp1 word, pOversamp2 word
pipes  pFiltered1 word, pFiltered2 word

constant  voltlow     word    = -30000
constant  volthigh    word    =  30000

// Nominal hardware sample rate, 200000 samples per second
constant  smpinterval double  =  6.000
// Reference timer rate, 440 cyles per second
constant  refinterval double  =  2272.727272
// Resample rate 88200 samples per second
constant  newinterval double  =  11.33786848

// DAPstudio filter design for the lowpass decimation 2 filter
// Taps: 37 (35), Scale: 1, Type: Lowpass, Window: Hamming
// Low Cutoff/Slope: 0.46/0.08  Sum: 1.000436  Abs Sum: 1.537970
vector HALFBAND word = (21, 0, -50, 0, 120, 0, -258, 0, 501, 
  0, -910, 0, 1631, 0, -3186, 0, 10330, 16384, 10330, 0, 
  -3186, 0, 1631, 0, -910, 0, 501, 0, -258, 0, 120, 0, -50, 
  0, 21)

pdefine aligning
  // Analyze the timing reference signal
  OSCSCAN(IPipe2, voltlow, volthigh,  \
     smpinterval, refinterval, pTimeAnalysis)
  // Evaluate both audio channels at the 88200 sample/sec rate
  TBRESAMP(IPipes(0,1),2, pTimeAnalysis, newinterval, pOversamp)
  // Separate the two audio channels
  SKIP(pOversamp,  0,1,2,  pOversamp1)
  SKIP(pOversamp,  1,1,2,  pOversamp2)
  // Apply halfband anti-alias filtering and decimate to 44100 rate
  // using the DAPL system FIRLOWPASS command
  FIRFILTER(pOversamp1,HALFBAND,35,1,2,-1,pFiltered1) 
  FIRFILTER(pOversamp2,HALFBAND,35,1,2,-1,pFiltered2) 
  // Recombine streams for transfer at 44100 samples/sec in each
  MERGE(pFiltered1, pFiltered1, $BinOut);
end

See the  TBSApp3.dms application file for DAPstudio.
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Application 4: Aligning measurements to IRIG-B 

This example discusses a more advanced application that uses other features of the DAPL system in 
addition to the Time Base and Synchronization package.

For this application, the goal is to record underground geological disturbances over a long period of 
time.  If something significant happens, blocks of data are recorded from a large grid of 12 geophones. 
If nothing of any significance happens, an occasional data record is captured to maintain baseline 
statistics about background noise and verify sensor health.  Frequencies of interest range from 0.1 Hz to 
100 Hz. 

Because of potentially very long periods of continuous operation, slight differences in sampling clock 
rates could accumulate into major misalignment between data sets collected at multiple stations 
covering a large geographic area. To avoid this problem, each data collection station aligns its data to 
the time reference signal from an IRIG-B satellite receiver. 

The IRIG-B signal provides 1/10 second timing pulses that are precisely positioned. However, the IRIG 
timing does not provide timing intervals suitable for directly clocking the data acquisition. The xDAP 
data acquisition provides the stable, high-rate timing required for high resolution sampling. If left free-
running, however, these local timers would gradually drift away from the time reference. The 
processing of the Time Base Synchronization package provides the means for keeping the data 
acquisition at these stations synchronized. 

Blocks of data  are selected from the processed data stream when events occur and sent for logging or 
other processing. 

To detect a low frequency rumble at 1/10 Hz, a data block must span at least 10 seconds. Detecting 
frequencies to 100 Hz requires a sample rate of at least 200 samples per second. Thus, a typical data 
block for purposes of a frequency analysis will be 2000 samples.  When a significant disturbance 
occurs, data blocks are recorded for as long as the disturbance persists. 

A data block is recorded every 10 minutes when no significant event is observed, to provide 
information about background noise.  

As data rates are reduced from the high rates to lower rates for logging, noise captured at the high 
sampling resolution can potentially result in aliasing artifacts. Additional processing is required while 
reducing the data rates, to eliminate exposure to aliasing hazards.

Solution: To improve the time resolution, the initial sample rate is boosted to about 20000 samples per 
second on each channel – much faster than the final recorded data set requires. The timing signal is 
analyzed by the IRIGSCAN command, which determines how to track the IRIG-B time base signal. 
The data stream is then processed by the TBRESAMP command, producing blocks of signal data at a 
partially-reduced 4000 samples per second rate aligned to the IRIG timing signal. 

The intermediate rate is still much faster than what is needed for data recording. The AAMFILT 
command is applied to avoid aliasing the captured noise as the data rate is reduced to the required 200 
samples per second in each block, with the data blocks remaining aligned to the 1-second intervals 
reported by the IRIG time base receiver.
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The RMS command monitors the signal level present in each block, producing one value per block. 
There are 12 channels with 200 samples per second in each, yielding blocks of 2400 samples. If the 
signal level reported by the RMS command is greater than a given threshold, the LIMIT command 
generates a triggering event. The TRIGSCALE command realigns  each event posted by the LIMIT 
command, adjusting it to the beginning of the corresponding 2400-sample block of data. The WAIT 
command waits for events, and when one arrives, it selects the indicated block of 2400 aligned 
samples, copying them to the event data communication channel. Otherwise, data block are discarded. 

There is one RMS value produced for each one-second time interval processed. Since the processing is 
aligned, counting one RMS value corresponds exactly to 1 elapsed second. Thus, this  “event 
timestamp” identifies the second containing the start of the event data. This 32-bit number is 
transferred via a second communication channel. There is one “event timestamp” value for each data 
block retained. 

To determine when nothing significant is happening, two conditions must be satisfied. First, the 
opposite of the previous condition must occur – the signal level reported by the RMS command must 
be less than the threshold that signifies an event.  Second, the number of elapsed seconds must be a 
multiple of 600 so that reports will occur no more than once per 10 minute interval. These two 
conditions are combined by the TAND command. When both events occur at the same place, the block 
of data representing background noise is selected and copied to the third communication channel.

DAPL configuration:

// This configuration requires that the host control panel
// application configures the following extra communication channels.
//   CpOut2 long data stream for timestamp information
//   CpOut3 word data stream for background noise data

idefine ScanInputs 
   channels 13
   set IP0  d0    1    // Timing signal
   set IP1  d1    20   // 12 sensor channels, measured with gain
   set IP2  d2    20 
   set IP3  d3    20       
   set IP4  d4    20       
   set IP5  d5    20     
   set IP6  d6    20      
   set IP7  d7    20      
   set IP8  d8    20   
   set IP9  d9    20      
   set IP10 d10   20    
   set IP11 d11   20    
   set IP12 d12   20  

   // Time interval for roughly 20000 scans/sec ==> 52 microseconds
   scan  52.0
end 
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DAPL configuration continued:

// pipes used for intermediate data streams
pipes     pTimeAnalysis  double
pipes     pAligned       word
pipes     pAntiAlias     word

// IRIG - TTL signal levels
constant  voltlow     word    = 450
constant  volthigh    word    = 14600

// Nominal hardware sample interval for about 20000 samples / second
constant  smpinterval double  =  52.00
// Resample intermediate interval for 4000 samples / second
constant  newinterval double  =  500.00

// Data rates for anti-alias processing
// Samples per second before reduction
constant  newrate     double  =  4000.00
// Samples per second after reduction
constant  outrate     double  =  200.00

// Triggering for events
trigger   tActivity    mode=normal
trigger   tSignal      mode=normal
trigger   tSigBlock    mode=normal

// Triggering for non-events
trigger   tInactivity  mode=normal
trigger   tTenMin      mode=normal
trigger   tNoise       mode=normal
trigger   tNoiseBlock  mode=normal

// Triggering levels
pipe      pRMS         word
constant  cNoiseLev    word = 400
constant  cMaxInt      word = 32767

pdefine monitoring
  // Analyze the timing reference signal channel
  IRIGSCAN(IPipe0, voltlow, volthigh, smpinterval, pTimeAnalysis)
  // Align sensor signals to time base at intermediate sample rate
  TBRESAMP(IPipes(1..12),12, pTimeAnalysis, newinterval, pAligned)
  // Perform reduction to final rate with anti-aliasing safety
  AAMFILT(pAligned,12, newrate,outrate, pAntiAlias)

  // Detect activity and deliver data blocks to event data channel
  RMS(pAntiAlias,2400,pRMS)
  LIMIT(pRms, INSIDE,cNoiseLev,cMaxInt, tActivity)
  TRIGSCALE(tActivity, 1,2400,0, tSigBlock)
  WAIT(pAntiAlias,  tSigBlock,0,2400, $BinOut)

  // Report activity timestamps to the event time channel
  TSTAMP(tActivity,CpOut2)
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DAPL configuration continued:

  // Detect lack of activity and deliver background noise data
  LIMIT(pRMS, OUTSIDE,cNoiseLev,cMaxInt, tInactivity)
  TGEN(600,tTenMin)
  TAND(tInactivity,tTenMin, tNoise)
  TRIGSCALE(tNoise, 0,2400,1 tNoiseBlock)
  WAIT(pAntiAlias, tNoiseBlock,0,2400, Cp3Out)

  
end

See the  TBSApp4.dms application file for DAPstudio.
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6.   Command Reference

The commands in this module can be categorized as timing analysis or resampling analysis. 

Timing analysis
These commands locate timing transitions in signals observed by xDAP sampling, building a timing 
correspondence stream that associates sample numbers with reference time in seconds. For signals that 
include additional encoded information, optional output streams can preserve this separately. 

OSCSCAN – Analyze digital timing oscillator waveform
IRIGSCAN – Analyze IRIG-B time base signal and extract encoded message

Resampling analysis
This command takes samples at the original sampling rate, and a stream of timing analysis data. The 
two are applied to generate a new stream of samples relative to the time base at a new specified rate. 

TBRESAMP – Resample to obtain data synchronized to the time base reference signal
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Processing Command
Module TBTSM :: IRIGSCAN
Perform a timing analysis and optional message extraction for an IRIG-B input signal .

Syntax
IRIGSCAN( IRIGIN, BITMASK, RSAMP, [TCODE,] PTIMING [,PMSG] ) 
IRIGSCAN( IRIGIN, LOWLEV, HIGHLEV, RSAMP, [TCODE,] PTIMING [,PMSG] ) 

Parameters
IRIGIN 

Pipe with input samples captured from an IRIG timing signal.
WORD PIPE

BITMASK 
Mask to select IRIG signal bit when IRIGIN is from a digital input port.
WORD CONSTANT 

LOWLEV 
Nominal signal-low level when IRIGIN is from an analog input port.
WORD CONSTANT

HIGHLEV 
Nominal signal-high level when IRIGIN is from an analog input port.
WORD CONSTANT 

RSAMP 
Sampling scan interval used to digitize IRIG timing signal, microseconds. 
FLOAT CONSTANT |  DOUBLE CONSTANT 

TCODE 
Option to record absolute timecode information parsed from IRIG encoding.  
KEYWORD, one of:   ABSOLUTE, ELAPSED 

PTIMING
Pipe receiving the output timing analysis information to be used by other tasks.
DOUBLE PIPE

PMSG
Optional pipe to receive raw message bits parsed from IRIG encoded IRIG signal. 
LONG PIPE

Description
An IRIGSCAN task captures time reference data from an unmodulated (voltage level-shifted) signal 
from an IRIG-B time-base receiver or generator device. The relationship between the sampling rate of 
this stream and the signal transitions observed in this stream is used to construct a timing analysis used 
by other processing tasks.

The samples captured from the IRIG-B signal are read from pipe IRIGIN. The BITMASK  parameter, 
or the LOWLEV and HIGHLEV parameters, determine how to interpret the logic-low and logic-high 
levels on the input signal. Parameter RSAMP specifies the scan rate used to obtain the raw samples of 
the IRIG signal, and also initializes internal timing. The optional parameter TCODE can be used to 
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select whether timestamps are in absolute timecodes or relative to the start of the run. The timing 
information is written to the PTIMING output pipe in a compact form for other tasks to use for data 
resampling. For advanced software systems already configured for this, the optional PMSG output pipe 
can deliver the raw unprocessed message bits from the IRIG-B signal.

Select the appropriate input specification parameters for the type of input signal you use:

• If the signal is a conventional TTL-level digital signal, directly connected to a pin on a digital 
port, set the BITMASK number so that there is a 1-bit at the position where the input signal is 
wired to the digital port (a logical AND mask), with 0-bits at all other positions in the mask.

• If the signal is connected to one of the analog input pins, specify the input pipe channel that has 
the analog voltage samples. Be careful that your signal voltage range is within safe limits of 
your DAP input pin – if not, use an appropriate attenuation network. For the LOWLEV 
parameter, specify the nominal low voltage level, as it would be digitized given your analog 
channel configuration.  Similarly, for the HIGHLEV parameter, specify the nominal high voltage 
level, as it would be digitized. The processing will classify all signal samples as either logic-low 
or logic-high, depending on whether the input voltage is closer to the nominal low or high 
voltage level. 

The sampling rate for observing the IRIG signal must meet these conditions: 

1. The sampling is done at regular time intervals. That is, it cannot be used with hardware 
triggered or burst-mode sampling. 

2. The sampling scan rate is at least 1000 samples per second in each channel. Sample lower than 
this and accurate capture of the IRIG signal is uncertain. 

The IRIG input signal must be sampled in the same input sampling configuration as all of the other 
measured data channels. In this way, it can establish which measurements in the data streams 
correspond to which positions in the IRIG timing pulse. Typically, the IRIG timing signal is observed 
once per scanning pass through the input sampling configuration channel list. For this normal case, the 
value of the RSAMP parameter will be exactly the same as the interval you specify on the SCAN 
command in your sampling configuration.

If your equipment supports the IRIG 200-04 (2004) standard, the IRIG signal can include modulated 
information bits for year, month, day, hour, minute, and second of calendar time. If you then specify the 
ABSOLUTE timecode option, the encoded information can be parsed from the input signal and used to 
determine an absolute timecode value, locating the data set in absolute time relative to the beginning of 
a standard epoch beginning with January 1, year 1 CE. Otherwise, you must use the ELAPSED 
timecode option (the default), which begins the timing analysis with relative timecode 0 at the 
beginning of operation when the START command takes effect. The default option is ELAPSED.

Some host software systems can interpret the raw message bits provided in the IRIG-B signal by the 
receiver or generator equipment. If you specify the optional PMSG pipe parameter, the raw bits will be 
collected into a 96-bit buffer. The bits are delivered as 3 32-bit integers. There are actually only 74 of 
the bits, aligned to the least significant bit, that contain information, as defined by the IRIG standards. 
The remaining high-order bits are filled with 0. The buffer is transferred in little-endian style, low order 
32 bits first, then middle 32 bits, then high order 32 bits. If the bits are reassembled by the host, and 
shifted out from the low order bit one at a time, this will reproduce the same sequence of encoded data 
bits as received in the IRIG signal.
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Examples
IRIGSCAN( IPipe9, $0010, 40.0, pTime ) 

The IRIG-B timing signal has TTL voltage levels, and samples from the digital port arrive at bit 
position 4, masked by the hexadecimal bit pattern $0010, on a digital port. There are 10 channels, and 
the last of these input channels, IPipe9, receives the raw samples. The nominal timing interval for 
these samples is 40 microseconds, as specified in the sampling configuration, though the actual timing 
as determined by the time base might differ slightly. The results of the timing analysis go to the 
pTime pipe, and from there can be routed to other tasks. Absolute timecodes are not required, so the 
default ELAPSED option is accepted, and the optional stream for IRIG message bits is omitted.

IRIGSCAN( IPipe0, 983, 14746, 25.0, ABSOLUTE, pTime, Cp3Out ) 

The IRIG-B timing signal is read as one of a group of analog input channels collected simultaneously. 
The signal logic levels are TTL compatible, and observed to be approximately 0.3 volts low and 4.5 
volts high. Measured on the voltage range -10 to +10 volts, these levels digitize to 983 and 14746 
respectively. The IRIG signal is digitized the same time that every channel is captured, at 25 
microsecond scan intervals, as set by the SCAN command. The input channel pipe IPipe0 is the one 
that receives the raw samples from the IRIG-B receiver. The results of the timing analysis go to the 
pTime pipe, and from there can be routed to other tasks. Two advanced features are used. The IRIG-B 
receiver provides encoded date-time information, and the ABSOLUTE timecode option is selected so 
that the absolute calendar time is used when later encoding timestamps. The application uses calendar 
information from the raw IRIG-B messages for purposes of displays, so the IRIGSCAN command 
sends the raw message bits to the host via the Cp3Out communication pipe, which was configured in 
the Windows control panel to transfer 32-bit (LONG) data. 
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Processing Command
Module TBTSM :: OSCSCAN
Perform a timing analysis on a digital, squared-pulse input timing signal.

Syntax
OSCSCAN( OSCIN, BITMASK, SAMPTIME, REFTIME, PTIMING ) 
OSCSCAN( OSCIN, LOWLEV, HIGHLEV, SAMPTIME, REFTIME, PTIMING ) 

Parameters
OSCIN 

Pipe with input samples captured from a digital time base signal. 
WORD PIPE

BITMASK 
Mask to select IRIG signal bit when OSCIN is from a digital input port.
WORD CONSTANT 

LOWLEV 
Nominal signal-low level when OSCIN is from an analog input port.
WORD CONSTANT

HIGHLEV 
Nominal signal-high level when OSCIN is from an analog input port.
WORD CONSTANT 

SAMPTIME 
Sampling scan interval used to digitize the time base signal, microseconds. 
FLOAT CONSTANT |  DOUBLE CONSTANT 

REFTIME 
Time base clock interval for each high-low cycle, microseconds. 
FLOAT CONSTANT |  DOUBLE CONSTANT 

PTIMING
Pipe receiving the output timing analysis information to be used by other tasks.
DOUBLE PIPE

Description
An OSCCAN task captures time reference data from a stable timing oscillator signal. The relationship 
between the sampling rate of the input data stream and the signal transitions observed in this stream is 
used to construct a timing analysis used by other processing tasks. The input signal from pipe OSCIN 
can arrive as analog or digital data. The  BITMASK  parameter, or the LOWLEV and HIGHLEV 
parameters, will determine how to interpret the sampled signal data. Parameters SAMPTIME and 
REFTIME  specify nominal timing rates for xDAP sampling and time base clocks, and are used to 
initialize internal tracking.  The timing information is written to the PTIMING output pipe in a compact 
form for other tasks to use for data resampling and timestamp recording. 

Select the appropriate input specification parameters for the type of input signal you use:

• If the signal is a conventional TTL-level digital signal, directly connected to a pin on a digital 
port, set the BITMASK number so that there is a 1-bit at the position where the input signal is 
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wired to the digital port (a logical AND mask), with 0-bits at all other positions in the mask.

• If the signal is connected to one of the analog input pins, specify the input pipe channel that has 
the analog voltage samples. Be careful that your signal voltage range is within safe limits for 
your xDAP input pin. For the LOWLEV parameter, specify the nominal low voltage level, as it 
would be digitized given your analog channel configuration.  Similarly, for the HIGHLEV 
parameter, specify the nominal high voltage level, as it would be digitized. The processing will 
classify all signal samples as either logic-low or logic-high, depending on whether the input 
voltage is closer to the nominal low or high voltage level. An exact match is not necessary.

The two timing parameters specify the expected signal rates.  Typically, the timing signal is observed 
once per scanning pass through the input sampling configuration channel list. For this normal case, the 
value of the SAMPTIME parameter will be exactly the same as the interval you specify on the SCAN 
command in your sampling configuration. The value of the  REFTIME parameter must be the period of 
the time base reference clock, expressed in units of microseconds:

    reftime == 1.0e6 / clock frequency 

This is a little unusual, but it represents the reference clock timing in the same units as the sampling. 
The largest supported  REFTIME parameter value is 1 second, which would be specified as 1.0e6 
microseconds.  

The sampling for observing the time reference signal must meet these conditions: 

1. The sampling is done at regular time intervals. That is, it cannot used with hardware triggered or 
burst-mode sampling. You can use software triggering on the data streams after resampling.

2. The sampling must be fast enough that there is more than one sample captured in each of the 
two signal levels, to guarantee that every logic level is reliably observed.  For typical 50% duty 
cycle oscillator signals, a suggested rule-of-thumb is to specify a sampling rate at least 5 times 
the reference clock rate. Faster sampling scan rates are better, and they also have the benefits of 
higher time resolution and better tracking accuracy. 

3. The timing input signal must be sampled in the same input sampling configuration as all of the 
other measured data channels. In this way, it can establish which samples in the data streams 
correspond to which positions in the timing reference. 

The OSCSCAN command faces a fundamental challenge of digital signal processing. It can only 
observe a change in the timing signal level at the time of a sample. If it sees that the timing signal has 
changed, it can only know that change happened some time later than the previous sample instant. As 
the OSCSCAN command starts to track the time base with greater accuracy, it sees fewer and fewer 
timer edges arriving unexpectedly late or unexpectedly early, hence it gets less and less information 
about how to improve its tracking. No samples are ever lost, but at first the sampling rate errors can be 
as large as the worst case timing tolerance of the xDAP. This accuracy typically improves to better than 
±10 parts per million in the first 30 seconds and better than ±2 PPM in 2 minutes. So, for special 
measurements where near perfect tracking of the reference time rate is needed during sampling, allow 
the xDAP system to run 1 to 2 minutes, discarding the data.  
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Examples

OSCSCAN( IPipe9, $0010, 40.0, 1000.0, pTime ) 

The timing signal data arrive from a digital port, via pin 4, which is selected using the hexadecimal bit 
mask $0010.  There are 10 channels, and the last of these input channels IPipe9, receives the raw 
samples. The nominal timing interval for scanning all the channels is 40 microseconds, as specified in 
the sampling configuration, though the actual timing as defined by the time base might differ slightly. 
The reference timer provides 1000 pulses per second, so the time interval between pulses is 1000 
microseconds. The results of the timing analysis go to the pTime pipe, and from there can be routed 
to other tasks. 

OSCSCAN( IPipe0, 983, 14746, 25.0, 1.0e6, pTime ) 

The timing signal from input channel IPipe0 is one of the channels read as a group of analog input 
channels. The signal levels are observed to be approximately 0.3 volts low and 4.5 volts high. 
Measured on the voltage range -10 to +10 volts. these levels digitize to 983 and 14746 converter units 
respectively. The timing signal signal provides one accurately-aligned timing edge per second, so its 
time interval is 1 million microseconds. The timing signal is digitized every time that the grouped 
channels are captured, and since there is only one data group, that means the timing channel is captured 
at nominally 25 microsecond intervals, as set by the SCAN command. The results of the timing analysis 
go to the pTime pipe, and from there can be routed to other tasks. 
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Processing Command
Module TBTSM :: TBRESAMP
Obtain samples aligned to an external time base for multiple channels.

Syntax
TBRESAMP( INSTREAM, NCHAN, PTIMING, RSINTERVAL, [METHOD,] OUTSTREAM )

Parameters
INSTREAM 

Pipe carrying samples from one or more data channels. 
WORD PIPE, LONG PIPE, FLOAT PIPE, DOUBLE PIPE

NCHAN 
Number of data channels in INSTREAM.
WORD CONSTANT 

PTIMING 
Pipe providing the results of a timing analysis calculated separately.
DOUBLE  PIPE 

RSINTERVAL 
Desired new sample rate in samples per second.
FLOAT CONSTANT |  DOUBLE CONSTANT 

METHOD 
Option to override method of calculation. 
KEYWORD, one of:  NONE, FAST, ACCURATE

OUTSTREAM
Pipe receiving the resampled data after processing.
WORD PIPE, LONG PIPE, FLOAT PIPE, DOUBLE PIPE

Description
A TBRESAMP task performs a resampling analysis based on timing analysis of a time base signal, 
allowing samples originally captured by hardware clocking to be transformed into equivalent, equally-
spaced samples at an adjusted rate referenced to the time base. This results in samples at a very 
precisely known rate, at very precisely known times that do not drift relative to a fixed time base 
standard.

Samples of data from multiple channels, with one sample for each of NCHAN data channels in each 
group, are provided by pipe INSTREAM. The PTIMING pipe provides the results of a separate timing 
analysis that establishes a best-fit correspondence between the original input data samples and the time 
base rate.  Using this information, samples are located in the data stream with RSINTERVAL 
microseconds between samples in each channel, based on the time standard. The value of 
RSINTERVAL corresponds to the time interval you would specify on a SCAN statement for capturing 
data based on the hardware clock. Each channel is processed separately, with assumptions about 
relative time or phase relationships. The resulting sample values are placed into the OUTSTREAM data 
pipe, in the same groupings as they arrived from the input pipe, but at the new rate.
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The data types of the input and output pipes must match. 

The data rate originally used to sample the input signals is arbitrary, but to fully capture information 
present in the input signal, the aligned sampling rate will typically be somewhat lower than the original 
input sampling rate. 

Both the initial sampling rate and the aligned output rate are typically much higher than the timing 
interval rate of the time base signal.  For example, IRIG-B typically provides 10 timing cycles per 
second, while GPS equipment typically provides 1 timing cycle per second. You might need to specify 
some other rate when you use another kind of precision digital oscillator as your time base signal. 

Nothing forces alignment between the reference timing  pulses and the crystal oscillator that drives 
sampling. As a result, sample locations as captured by the hardware do not in general align perfectly to 
the time-locations desired for the resampled data. Evaluation of samples at resampling positions is 
closely related to the DSP problem of accurate signal interpolation. The resampling uses a balanced 
interpolation, based on an equal time-horizon of older and newer samples surrounding each position of 
evaluation, and has an accuracy of approximately 15.5 bits.

At start-up, the TBRESAMP task must locate a timing reference pulse for initial alignment. With IRIG-
B signals, this special pulse occurs once per second. For other time-base oscillators, any timing pulse 
can serve as an initial reference pulse. The first output sample will align to that reference pulse. There 
could be a considerable delay, in excess of a second, before the first reference timing pulse is located 
and the first data produced at the new output rate. 

At the end of your data collection run, the resampling process typically needs some extra raw data 
beyond the final point of evaluation that you need to retain for your resampled output stream. Collect 
more raw input samples than you would otherwise, to allow this extra margin. 

The optional METHOD parameter is one of the following keyword strings, in all capital letters but 
without any quote characters.

• FAST This option is appropriate for most applications, particularly those having some 
observable random noise, fast processing rates, or signal processing such as filtering. Spectrum 
analysis results are typically very good.  In theory, a small “timing jitter” on roughly the order 
of 1/1000 sample can exist in locating resample positions, making measurements appear slightly 
"noisy". In practice, you will find it difficult to see any effects in your results, as real signal 
noise masks the artificial noise. 

• ACCURATE  This is the best option for very precise, very clean signals, to obtain the best 
possible reconstruction of every sample, particularly at very high frequencies. There is almost 
no timing jitter effect – too small to detect. This option requires roughly twice the computation 
of the FAST method, using a two-stage interpolation. If you have a surplus of CPU capacity, 
there is no harm from using this method even if you don't otherwise need it. 

• NONE  If your hardware sampling rate is already very much faster than the rate of your 
final resampled data, the abundant data already provides plenty of resolution, and additional 
calculations within a tiny fraction of a sample position would be wasted. You can use this option 
to bypass unnecessary calculations, and select the closest sample as produced directly by the 
hardware sampler.  This is extremely efficient, but almost always produces some visible jitter 
“noise effects” in signals. 
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If you omit the METHOD parameter, you will get the FAST option by default.

Some additional considerations:

1. For best results, the frequencies present in every channel should be band-limited to below 40% 
of the Nyquist frequency (at least 5 samples captured per cycle).  The resampling is somewhat 
analogous to fitting a smooth curve to the data, and then evaluating along the curve. If the input 
data set is not smooth, the meaning of the curve fitting operation is unclear.  Violating this 
guideline produces results similar to partial lowpass noise filtering, altering the data but in a 
way that is sometimes beneficial. If your initial data set is not suitably band-limited, it is likely 
that you are already subject to aliasing problems in your data sets, even before you apply any 
TBRESAMP processing.

2. Significantly lowering the sampling rate using  TBRESAMP command can introduce the same 
kinds of aliasing effects as any  undersampling of a signal. The TBRESAMP command has no 
defenses against aliasing. If you need very large rate reductions, consider applying anti-alias 
filtering operations such as FIRLOWPASS, or the Anti-Aliasing Multichannel Module for the 
rate reductions.

3. If subjected to abrupt steps (which would violate the bandwidth condition above), the 
interpolation process exhibits a transient behavior similar to a frequency-selective digital filter 
in a neighborhood of the discontinuity. Because the interpolation is balanced forward and 
backward in time, and applied to data in a buffer, the transient can appear to have a counter-
intuitive "before the disturbance arrived" behavior.

4. The timing alignment depends on continuous sampling starting from sample 0. Burst mode 
processing, in which sampling is physically started and stopped, typically does not work well, 
carrying stale sample values in filtering buffers from distant previous operations.

Examples

CONSTANT  Newinterval double = 166.6666666666
TBRESAMP(IPipe(0..5), 6, pTiming, 6000.0, pAligned)

Read voltage and current values for a 3-phase power transformer, from the six input sample pipe 
channels 0 through 5. The timing analysis results from a separate IRIGSCAN command are routed into 
this command via pipe pTiming. The power system operates at the North American 60 Hz frequency, 
so to obtain a new sampling rate 6000 samples per second, the time interval between samples at the 
new rate is 166.6666666666 microseconds. This aligns the data set to power system rates and can 
represent harmonic frequencies up to the 50th.  Results are delivered to the pAligned data pipe.  

TBRESAMP(IPipe(0..7), 8, pTiming, 50.0, ACCURATE, pStream)
SKIP(pStream, 0, 800, 159200, pSelected)

Simulate burst activity aligned to time base intervals.  Blocks of representative data are collected from 
all channels once for each 1-second cycle, to be transferred via a network for centralized logging. 8 
sampled input channels are provided by Ipipe(0..7). The timing information, from analysis of a 
precision digital oscillator operating at 400 cycles per second, is routed to the TBRESAMP processing 
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via pipe pTiming.  The TBRESAMP processing delivers 20000 samples per per second into each 
channel, at intervals of 50.0 microseconds, producing 160000 samples per second composite that are 
sent to the pStream data pipe. Exceptional accuracy is required for the calculations, so the 
ACCURATE processing override is specified. 

For each channel, the SKIP processing takes 100 samples for every group of 20000 samples in each 
channel  – 800 values out for each 160000 samples it receives.  Because of the alignment of rates, the 
SKIP command processing delivers each short burst of data at the beginning of each 1-second time 
base interval.  The selected data are placed into the pSelected data pipe. 
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Appendix I.   Resampling Technology

What is resampling?
Resampling is the application of well-established DSP techniques to convert a stream of samples, 
captured under control of one timing clock, into another stream of samples referred to a different 
timing signal. You can think of resampling as accurately reconstructing the continuous signal from the 
available samples, and then selecting a new set of sample positions along this reconstructed signal. 
Resampling is closely related to the mathematical problem of numerical interpolation. 
Resampling is widely used in digital music recording, synthesis, and playback. It has been much less 
commonly used for test and measurement applications, but it is no less valid for these. 

When is resampling applicable?
Resampling is appropriate when there is a secondary timing reference, and you want samples aligned to 
that time reference, rather than the original sampling clock where measurements were captured. 

How are resampled values computed? 

The resampling calculations are very similar to the calculations that would be done to interpolate 
between two known points along a straight line segment. For the case of interpolating along a 
continuously varying signal, many known points (time-sample pairs) are used instead of just two. And 
the interpolation curve is a higher-order curve, not a straight line. 

It is not immediately obvious how to reconstruct a signal with continuously varying curvature at any 
arbitrary location from discrete samples. However, the Whittaker-Shannon Interpolation Theorem gives 
an explicit formula for doing exactly this. Any continuous signal (subject to bandwidth restrictions) can 
be reconstructed perfectly from its samples.

The practical difficulty in applying the Whittaker-Shannon Interpolation Theorem is that a perfect 
reconstruction requires an infinite number of operations using arithmetic with infinite precision. 
Fortunately, perfect reconstruction is not necessary. There is no such thing as perfect measurements, 
and attempting an absolutely perfect reconstruction would only reproduce measurement noise in 
complete detail. Approximations to the Whittaker-Shannon formulas with a finite number of terms and 
finite numerical precision yield excellent results, with the numerical errors masked by the roundoff, 
nonlinearity, and noise effects that you will experience in real measurement data. 

What is a "resampling filter"?
The theoretical Whittaker-Shannon Interpolation Theorem formula has the form of a Finite Impulse 
Response (FIR, transversal) digital filter — except for the infinite number of terms involved. A 
practical filter is obtained by reducing that filter to a finite length by windowing, a standard DSP 
technique. After this, the calculation process is the same as those for an ordinary FIR filtering 
operation. A slight complication is that a different filter must be constructed for every point to be 
evaluated.

32



What is the impact on signal amplitudes?
Just as ordinary frequency-selective filters have frequency-dependent gain properties, interpolation 
filters have these too, but the intent is to make these side-effects as small as possible.

Low frequencies should see no detectable gain error effects. 

The interpolation filters in the Resampling Analysis Modules deliberately sacrifice accuracy at 
frequencies higher than 40% of the Nyquist frequency of the time-based sampling rate, in favor of best 
performance at 40% of the Nyquist frequency or below. This restriction does not necessarily 
compromise an application — the sample rate of the high-density clocked data stream is oversampled 
significantly compared to the time-rate of the encoder edges. This means that the practical bandwidth 
limitations of the resampling occur at high frequencies beyond those that should be present in the 
signals you are measuring. 

Amplitudes of signals in the low frequency band are preserved within 0.0002 dB — that is, the 
attenuation effects on a signal of maximum amplitude are less than the bit chatter that you will get 
anyway from digitizing to 16 bits precision. Frequencies higher than the 40% of Nyquist frequency can 
still carry useful information, but you must keep in mind that the higher the frequency the greater the 
attenuation effects, so you cannot depend on the magnitudes to be accurate.

What is the impact on signal phase?
An interpolation filter has absolutely no phase distortion effects. However, practical implementation 
restrictions will sometimes select resampling locations that only an approximation to the ideal 
locations, causing small erratic effects on phase that look like a lot like time jitter. 
Low frequency waveforms can't change very much from one sample to the next, so time displacements 
that are a tiny fraction of one sample at the original high-resolution have no observable effect. For a 
wave that is very high frequency and therefore changing very fast, time-quantization produces localized 
small time shifts with effects very similar to random noise. Unlike true random noise, the effects 
decrease at lower frequencies and lower amplitudes. For typical real signals, the chatter is masked by 
natural background noise and is difficult to detect.

What are the “interpolation modes” and what is their effect?
Because time-jitter effects can sometimes be large enough to be observable, there are three available 
operating modes for selecting a resampling location, given a mathematical determination of the desired 
location. 

• Nearest neighbor mode.   There are no numerical computations. If the position of the resampled 
value is different from the position of an available time-based sample, the closest time-based 
sample position is selected, and its numerical value is used unmodified. This is called the 
Nearest Method in the Time Base Synchronization software. This approach is very efficient,  but 
it can produce an observable “phase jitter” in high-frequency signals. 
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• Precalculated mode.   The resampling location is rounded to one of a finite set of locations 
where precomputed interpolation filters can be applied. The phase shift is approximately 1/1000 
of the phase shift that would result from one sample displacement at the high internal sampling 
rate. To put this in perspective, if a signal has maximum possible amplitude of 32767 counts, at 
the maximum 40% of the Nyquist limit, the difference in a sample value due to the phase jitter 
could be no more than 16 converter counts. At more typical lower amplitudes and lower 
frequencies, the effects are proportionally smaller. This approach is called the Fast Method in 
the Time Base Synchronization software. For signals with normal levels, bandwidth, and 
background noise, or that are subjected to a frequency spectrum analysis, this is the method of 
choice, and it is selected by default.

• Phase-interpolated mode.   The resampling is calculated at two bounding locations for which 
precomputed interpolation filters are available, and then the final sample value is obtained by 
linearly interpolating between these two bounding filters. Using this method, timing jitter 
becomes undetectable. However, this computation requires twice the CPU resources of the 
precalculated mode. This approach is called the Accurate Method in the Time Base 
Synchronization software. For extremely clean signals and absolute minimal measurement error, 
this is the method of choice. In practice, it rarely adds any meaningful improvement to 
measurement quality. 
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Appendix II.   Format of Raw IRIG-B Messages

This information is based on the IRIG 200-04 standard.
IRIG signals are generated by communications/time base equipment that captures timing information 
from a time reference source and encodes the information as a digital stream. Though the time packets 
are infrequent and report the time at a low resolution (seconds), the positioning of timing pulses within 
the packet are very accurate. For the popular IRIG-B message format, there are 10 designated timing 
pulses per second, with each of these divided into 10 bit-intervals of 1/100 second; so resolution to 
±0.01 seconds is simple. With sophisticated circuits keyed to the timing pulses, time resolution close to 
microseconds is possible. For the case of Data Acquisition Processors, time resolution is possible 
within 1 sample scanning interval. 

IRIG bit-intervals consist of high-low pulse doublets, each of which covers one cycle of alternation 
between high and low logic levels. Pulses begin at an accurately-synchronized rising edge at precise 
timing intervals. The duration (duty cycle) of each pulse is varied to encode information, consequently, 
the locations of falling edges vary.

Modulation schemes
IRIG receiver/generator equipment can produce either a modulated or unmodulated (level shifted) 
signal. The Time Base Synchronization module requires the unmodulated logic signal, also described as 
a “level shifted” signal since 0-to-5 volt logic is unbalanced and always positive.

The modulation carrier is a higher frequency sinusoid with frequency a multiple of the fundamental 
timing frequency of 100 timing pulses per second: typically 10000 Hz. The modulated signal has the 
advantage of being balanced so that it can be capacitively coupled. The disadvantage is that additional 
detection logic is required to extract the encoded values. The encoding is amplitude modulation, with 
logic-low level represented by an amplitude that is 0.3 of the logic-high signal level. In concept, a DAP 
could sample at a sufficiently high rate and apply some kind of demodulator to recover the logic-high 
and logic-low portions of the data cycles directly, but this kind of front-end processing is not provided 
in the Timestamp and Synchronization Module.

The unbalanced voltage-shift output with logic-low and logic-high levels is compatible with serial 
communications standards such as RS-232 and RS-484. However, the  transfer protocols and the packet 
encoding of these standards do not apply, so the usual serial decode chips cannot be used. Data 
Acquisition Processors do not require DC voltage balance. The unmodulated signals can be provided 
either via a digital signal pin at TTL logic levels, or via an analog signal channel. 

Information bit encoding in IRIG signals
IRIG signals include timing information and encoded data information.

Since the duty cycle of the signal in each bit-interval is allowed to vary, this can be used to encode 
information.  The pulses in IRIG signals have thee forms.

• Synchronizing pulse. No data carried. This pulse is high for 80% of the pulse interval, then low 
20% of the pulse interval. 

35



• Data 1 pulse. This pulse is high 50% of the pulse interval, then low 50% of the pulse interval. 
• Data 0 pulse. This pulse is high 20% of the pulse interval, then low 80% of the pulse interval. 

Encoding of bits in IRIG signals
Sequences of data pulses between the synchronizing pulses are used to encode data (or are padding 
zero bits). The synchronizing pulses are the last in each group of 10, leaving 9 bits available to carry 
data in all of the packets except the first, which has an extra synchronizing pulse to indicate alignment 
with 1-second intervals, thus only 8 bits for carrying data. By extracting the sequence of bits,  the 
encoded information can be parsed from the IRIG signal.  

Padding bits are used in various places, in accordance with coding conventions for the fields. For 
example, numbers are typically represented in a BCD (binary coded decimal digit) form with two digits 
represented between synchronization pulses, leaving an extra padding 0 bit between the two digits. 
However,  padding bits are not counted as "packet bits" in the standard, and do not need to be preserved 
in the captured information representations. How to interpret data bits, and where to skip padding bits, 
is all prescribed by the IRIG standards. The retained information is 74 bits. 

Details of data fields
The following tabulation goes field-by-field. The fields are enumerated according to pulses, with pulse 
0 being the one that has the special timing marker for 1-second synchronization. Bits are numbered 
from 1, irrespective of the pulse group, in the order that they are received, in the manner shown in the 
standard.

Time fields

P0

Seconds, BCD 
Short packet, skip the marker pulse.
Bits 1-4: weights 1, 2, 4, 8 (for first digit). Range 0 to 9 used.
Skip padding bit.
Bits 5-7: weights 10, 20, 40 (the second digit). Range 0 to 59 used. 

P1

Minutes, BCD 
Bits 8-11: weights 1, 2, 4, 8 (for first digit). Range 0 to 9 used.
Skip padding bit.
Bits 12-14: weights 10, 20, 40 (the second digit). Range 0 to 59 used.
Skip padding bit. 

P2

Hours, BCD 
Bits 15-18: weights 1, 2, 4, 8 (for first digit). Range 0 to 9 used.
Skip padding bit.
Bits 19-20: weights 10, 20 (the second digit). Range 0 to 23 used.
Skip 2 padding bits. 

P3 Days of year, BCD, first two digits 
Bits 21-24: weights 1, 2, 4, 8 (for first digit). Range 0 to 9 used.
Skip padding bit.
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Bits 25-28: weights 10, 20, 40, 80 (the second digit). Range 0 to 90 used.
(No trailing pad bits.) 

P4
Days of year, BCD, last digit 
Bits 29-30: weights 100, 200 (for last digit). Range 0 to 300 used.
Skip 7 padding bits.

P5

Year, last 2 digits, BCD (previously: 9 control bits)
Bits 1-4: weights 1, 2, 4, 8 (for first digit). Range 0 to 9 used.
Bit 5: Skip padding bit.
Bits 6-9: weights 10, 20, 40, 80 (the second digit). Range 0 to 99 used. 

P6 Bits 10-18 reserved as control bits.
P7 Bits 19-27 reserved as control bits.

P8

Seconds of day as running binary, low-order bits
Bit 1: weight 2^0
Bit 2: weight 2^1
...
Bit 9: weight 2^8
(Spans range 0 to 511, no padding bits) 

P9

Seconds of day as running binary, high bits
Bit 10: weight 2^9
Bit 11: weight 2^10
...
Bit 17: weight 2^16
One padding bit
(Spans range 0 to 130560 in steps of 512, range used 0-85888, 86400 seconds/day) 

------------ End of Document ----------

37


	1.  Introduction
	Internal timing and external reference timing
	Sample and fractional-sample time intervals

	2. Installing the Time Base Synchronization module
	3. Observing Reference Time
	Time-base analysis using IRIG-B
	Time-base analysis using GPS
	Time-base analysis using a precision oscillator

	4. Resampling
	5. Application Examples
	Application 1: Alignment to power frequency rates 
	Application 2: Alignment to iDSC sampling rates 
	Application 3: Alignment to digital audio rates 
	Application 4: Aligning measurements to IRIG-B 

	6.   Command Reference
	Timing analysis
	Resampling analysis
	Processing Command
	Processing Command
	Processing Command

	Appendix I.   Resampling Technology
	Appendix II.   Format of Raw IRIG-B Messages
	Modulation schemes
	Information bit encoding in IRIG signals
	Encoding of bits in IRIG signals
	Details of data fields


