
2265 116th Avenue N.E., Bellevue, WA 98004
Sales and Customer Support: (425) 453-2345

Finance and Administration: (425) 453-9489
Fax: (425) 453-3199

WWW: http://www.mstarlabs.com/

From the Microstar Laboratories web site

Implementing Automatic Controls
Using Data Acquisition Processor
Boards
Though Data Acquisition Processor (DAP) boards are primarily data acquisition
devices, the onboard processing power that makes rapid service to data
conversion and buffering devices possible can also be applied for rapid service to
external control processes. There are certain limitations, but for systems that can
stay within these limitations, Data Acquisition Processors provide a reliable
platform for the implementation of control methods that would be very difficult or
very expensive to deliver any other way. Such systems might implement
advanced control methods, require special data analysis, or operate on a scale
beyond the capabilities of ordinary control devices.

This white paper surveys the challenges and strategies for implementing
automatic control systems on Data Acquisition Processors.

Contents

Applicability
The Role of Architecture
The Role of Processing
Timing and Regularity
Time Delay Benchmarks
Multitasking Control
Representing State
Control Strategies
Tuning and Monitoring
Special Applications

When to use DAP technology
How hardware affects system performance
How software affects system performance
Assuring response in real-time
Measuring actual performance limits
Time-critical and preparatory processing
Managing complex event-driven systems
Relationship to common control strategies
Extensions to facilitate process control
Examples illustrating technical benefits

http://www.mstarlabs.com/
http://www.mstarlabs.com/dataacquisition/dap.html

Applicability
Data Acquisition Processors provide device-level controls. They can operate in
stand-alone workstation nodes, or as low-level remote processing nodes within a
multi-level control hierarchy. The fact that they can capture a large number of
measurements accurately means that they are useful as data server nodes in
SCADA networks, with the host supporting the SCADA protocols and network
connections. They can apply local process knowledge to implement a control
policy downloaded from a higher level node, receive and respond to feedback,
and intelligently analyze data so that higher level controls receive the best
information.

Perhaps it is easier to say when Data Acquisition Processors are not appropriate.
Applications with relatively low measurement rates, moderate accuracy
requirements, one or very few measurement channels, and minimal processing
needs will probably find alternative low-cost devices that serve the purpose well.
Most feedback regulator controls have pre-packaged solutions available at a
reasonable cost. Even though this means that the great majority of measurement
and control applications do not need the high-end capabilities of Data Acquisition
Processors, this still leaves many difficult measurement and control applications
for which Data Acquisition Processors are well-suited but for which few
alternatives are available.

In addition to basic requirements for signal capture, control applications must
process those measurements, apply a control policy, and generate control
responses, meeting real-time constraints while doing these things.

The simplicity of pre-packaged control solutions offers very little in the way of
extensibility or flexibility. For those cases in which the most basic control
solutions are not sufficient, the options are few.

1. For optimal performance, but with the highest cost, greatest risk, and
least flexibility, hardware-software solutions can be designed from the
"ground up." The difficulties of this are great enough to make this option
out of the question in most cases, but the benefits can be great if it is
possible to apply the results widely and amortize the development costs.

2. To accelerate the development cycle and reduce costs, it is often worth
compromising slightly on performance and using modular hardware and
software sub-systems rather than starting everything from scratch. Data
acquisition components, interconnected systems, and processor modules
are available. Finding components that can inter-operate, can meet
performance specifications adequately, and are supported by sufficient

and affordable development tools can remain a challenge. Long-term
maintenance is a concern.

3. Data Acquisition Processors are the next step in modularization. They
provide data conversions, processing power, signal interconnects, and a
straightforward development platform. The hardware is completely
pre-configured, and so is the software necessary for device operation, but
this doesn't leave you much hardware-level flexibility. If you can work
within the architecture, it is relatively easy to program specialized control
features using a high level programming language. Pre-existing software
provides for routine configuration of timing rates, data channels, data
routing, pre-processing, and so forth. When you have completed the
software configuration and customized control software, the hardware is
an off-the-shelf commercial component ready to install.

4. Or in the end, you can stay with simple control devices that are available,
cope with their limitations, and bear the economic costs of operation far
below optimal capacity.

The Role of Architecture
Data Acquisition Processors are designed for measurement processing, where
speed means lots of channels and bulk data movement. Devices that best
facilitate bulk data movement are not the ones that best facilitate responses to
individual items. Consequently, there are limitations on the speed and regularity
of process timing to be considered.

When processing captured data streams at very high rates, a delay of a
millisecond causes backlogs of thousands of samples in hardware devices. Both
conversion inaccuracy and loss of data are unacceptable. This suggests the
following criterion for evaluating real-time performance: response times must be
in fractions of a millisecond. In contrast, workstation systems must operate on a
human time scale, and delays much longer than 50 milliseconds make system
response seem sluggish. This establishes a comparable criterion for its real-time
performance.

Delays for processing and moving data make the problems of converter device
operation more difficult. Processing is interleaved, with some processing time
applied to device operation, some to data management, some to data
communication, some to higher-level processing. It takes time for data to
propagate through these stages. As a general rule of thumb, you cannot depend
on a Data Acquisition Processor to deliver a completed result in response to an
individual sample in less than 100 microseconds (and you must verify by testing).

Contrast this to the architecture of a typical workstation host. It is optimized for
moving bulk data to support graphical data presentations and multimedia. After
operations are set up, data movement is fast, but chip sets for memory
management, bus control, and peripheral control require setup times in
preparation for the data movement. There is even a setup time for an operation
as simple as reading the current system time from an external timer chip.
Workstation systems typically host an array of diverse devices, and these
devices compete for service. There is no assurance about how much time the
devices will take, or how much time device driver code will take to operate them.
Add to these difficulties the heavy computational loading of a typical workstation
operating system, and perhaps a GUI environment specialized for data
presentation, and in the end you can't depend on delivery of any data in less than
about 10 milliseconds... Or it might be 100 milliseconds or longer depending on a
variety of uncontrolled conditions.

Even if you replace the operating system with a fine-tuned embedded
microkernel system specialized for real-time systems, disable all unused devices,
eliminate user interaction, and devise a way to load your control software as an
embedded application, even in this highly customized PC environment, you will
still have a very difficult time getting responses for the best case in less than a
millisecond or two, and even then you can't trust it. It simply isn't designed for this
purpose.

The Role of Processing
On a Data Acquisition Processor, the hardware processes for measurement and
the low-level software processes to capture and move that data are
pre-programmed. Control algorithms will reside in higher-level processing
organized as independent processing tasks, which are scheduled for execution
by a system task scheduler. There isn't much overhead with any of these
operations, but there is some overhead with each, and the effects on delay are
additive.

Data movement mechanisms called data pipes will transfer data between tasks
or to external devices. The schedulability of the tasks depends on availability of
data.

Timing and Regularity
Basically, you do not need to worry about obtaining samples consistently and
accurately on a Data Acquisition Processor. A hardware-based sampling clock
controls the timing of sample capture when an input sampling configuration is
started.

Sampled data systems depend on frequent and regular sample values. While the
sampling is hardware controlled, the control processing is not directly tied to the
hardware oscillator. Collected data will be moved out of hardware devices and
into a memory buffer where they can be managed by the onboard processor. The
pipe system will then make the data available to processing tasks. Control
processing can then begin to respond to the new data.

Collecting data in hardware and managing it in blocks with a general purpose
processor has big advantages for general data acquisition, which is of course
what Data Acquisition Processors are primarily about. But data collection and
buffering can be an undesirable level of "baggage handling" for the case of
high-speed control applications. Collecting samples in memory means delays,
which are undesirable in many ways. But for applications where these delays are
small compared to the time scale of system operation, the ability to collect a
block of data spanning many signal channels, and then responding block by
block instead of sample by sample, delivers a large boost in efficiency.

Ideally, all previous processing is completed and tasks are idling at the time that
a new sample becomes available. This sample is plucked immediately from the
hardware buffering devices. Processing of that value is completed and responses
are delivered before additional sample values have time to accumulate. There
are delays, but these are bounded, and there are not many of them. If the interval
between samples is longer than the maximum possible delay plus the processing
time, responses for each sample are guaranteed to be delivered before the next
sample is captured. Under these conditions, no supplementary synchronization
mechanism is required. To respond to new data in minimum time, all that is
necessary is to attempt to read new data, and that request will be completed as
soon as possible after the data become available.

Sampling and Bandwidth

Before worrying about what the Data Acquisition Processor will do with data, it is
important to determine the application needs first. The sampling rate is important.

For the case of digital systems, you will want to watch hold times closely. When
update cycles are fast, you might want to deliberately hold digital output levels for
an extra update cycle. Otherwise, delay variability might cause very late
activation in the current cycle but very early deactivation in the next, leaving a
very narrow pulse that an external system might miss. For input data, there is a
similar hazard. If the digital level is not held for a full sampling interval or more, it
is possible for sampling to miss a pulse completely.

For continuous signals, there is the fundamental Nyquist Limit. Approaching this
limit, the fundamental one-sample delay inherent in digital systems starts to
become as important as the real content of the signals. Even if all of the

important frequencies are below the Nyquist bound, it is still possible for the
aliasing phenomenon to track higher harmonic frequencies if they are present,
producing misleading effects in the sample sequence. For digital to analog output
conversions, the latching converters act as a zero-order hold, and operating them
too slowly produces a very poor stepped approximation to the desired output
signal. You can perform separate simulation studies to optimize timing rates, but
generally for output signals that are reasonably smooth the sample rate should
be at least 10 times larger than the highest relevant frequency in theresponse
spectrum.

Pipelining Delays

There is always an inherent one-sample delay in a discrete control loop. Given
that an output was applied at the current time, the control loop will not see the
feedback results until the next sample is captured.

Additional delays include the conversion time, the time for processing to detect
new samples and access the hardware devices, data transfer delays to place the
sample into memory and attach this memory to the pipe system. These delays
are fundamental limitations of the Data Acquisition Processors and the DAPL
system. They occur before processing can begin.

Task Scheduling Delays

Existence of data for control processing does not in itself guarantee that the
control processing begins execution immediately. Task scheduling introduces
additional delays. In a high-performance control application, there should be a
minimum number of other tasks interfering with the execution of the critical
control sequence. System-level tasks for purposes of device control are always
present and these you cannot control. There are application-specific delays
associated with completion of the control processing, and you do have some
control over these delays.

Some means for controlling scheduling delays are:

• Use the minimum number of tasks consistent with application
requirements and acceptable software complexity.

• Deliver responses as soon as possible. If any processing can be deferred
until after the result is delivered, do so.

• Optimize the execution path between the detection of new data and the
delivery of the control result.

• Break up processing of long numerical sequences with OPTION
QUANTUM=200.

• Where you can, use lower priority processing for tasks that might interfere
with critical time response.

Real-time constraints are less about raw speed than about what delays might
happen, how often they happen, and how corrections are applied when they
happen. Applications will usually fall into one of these categories:

1. very short delays never matter,
2. short delays do not matter as long as they occur only occasionally and

recovery is fast after each,
3. delays beyond the fundamental one-sample delay are not tolerated.

When more than one sample has time to collect before control processing is
scheduled, your control application will receive more than one new input value.
Your processing can spin through the backlog of values quickly to "catch up" to
current time, losing no information and bringing state up to current, but it cannot
go back to generate missed outputs. For applications where these delays are not
long enough or frequent enough to matter, this is a natural means of recovery
and you won't need to take any other corrective action.

If you are willing to tolerate the delays, you might be able to operate at higher
sampling rates, but a consistent backlog of data will result in a consistent output
delay. Sometimes this backlog merely cancels out any speed increases you
might have thought you were getting because of the higher sampling rate. At
other times, the increased processing overhead will mean that there is a net
increase in average delay time, and this could increase the phase lag enough to
compromise the stability margin. You might have to operate the loop at a lower
gain setting to compensate, with reduced disturbance rejection at the lowered
gain.

Time Delay Benchmarks
There is a limited amount that you can do to avoid delays, but the DAPL system
can provide you with information about what those delays are. You will need to
simulate system timing with executable processing tasks. These do not need to
be the actual processing tasks, particularly not in early project stages while
feasibility is being evaluated. This is actually a rather important point: you do not
need to fully implement your system to study critical timing.

• To simulate processor loading, you will need a custom processing
command that wastes a known amount of processor time for each
sample that it reads. You can get this using a loop that writes to a
hardware device repeatedly, for example, using a dac_out function.
(Putting a hardware function in the loop prevents the compiler from

"optimizing away" your processing code and eliminating the processor
loading that you want.) Suppose for example that you observe that, on
your DAP model, the loop can execute 2.5 million times per second. Then
invoking the loop for 2500 cycles will produce a simulated 1 millisecond
processing activity.

• To simulate system processing delays, determine how many processing
tasks you will have, and produce a network of tasks that move data
through the pipes in much the same configuration that your application
will use. Lay out your application data flow sequence, and substitute
arbitrary processing for actual processing that is not yet available. For
tasks that are primarily data movement, use COPY commands. For tasks
that are primarily data selection, use SKIP commands. For tasks that are
primarily numerical processing, substitute FIRFILTER or FFT
commands.

• To simulate delays from transfers to the host, you can use a
COPY(IPIPE0,$Binout) processing command, and configure
DAPstudio software to receive and discard the data.

• Try to use a realistic number of samples per second in each data transfer.

Once you have a processing configuration to test, you can activate the built-in
task statistics monitor. Documentation on this is provided in the DAPL Manual. In
DAPstudio, you can right-click the Processing configuration tab, and, in the
Options dialog, activate the Sequencing option. This will give you a new
Sequencing sub-tab under the Processing tab. In the sequencing editor dialog,
you can add the following lines to your processing sequence, after the start
command.

statistics on
pause 10000
statistics
statistics off

This will monitor task timing for a period of 10 seconds, displaying the timing
statistics for all tasks. The most important statistics:

1. Compare the amount of time used by the task to the total run time. This
will verify assumptions about the amount of processor loading in each
task.

2. Check the worst-case latency. All tasks in one processing loop will have
the same latency, so the worst case for one is the worst case for all. If
this time interval is less than the sampling interval, there will never be a
data backlog, and the most data received at any time will be one new
sample.

http://www.mstarlabs.com/dapstudio/tabs.html
http://www.mstarlabs.com/docs/manuals/DAPL2000.PDF
http://www.mstarlabs.com/dapstudio/tabs.html

3. If the worst-case time is less than two sample intervals, and the average
processing time is much less than one time interval, there will be
infrequent backlogs of no more than 1 extra sample.

Multitasking Control
Some control activities are critical for delivering a response as quickly as
possible, while other activities perform the analytical work to prepare for this. It is
possible to take advantage of multitasking features of DAPL to separate these
activities so that there is minimum interference with time-critical processing.

If you can use tasking priorities, you can place the time-critical processing at a
high priority level and leave the preparation and analysis processing at lower
priority. When you do this, the lower-level tasks have negligible effects on
process timing, yet they will use any available time for completing their
processing in the background. The disadvantage of this scheme is that the tasks
are completely independent, so sharing state information can be complicated.
You might need to keep some of the preparatory state-management code in the
high-priority task, but perform those computations after time-critical processing is
finished.

Representing State
Almost without exception, controllers maintain some kind of state information.
Even model-free control schemes such as PID maintain derivative and integral
estimator states. Each control action depends on a combination of new input
information and state information.

It is possible to make better control decisions when those decisions are based on
knowledge of how the particular system responds. State information can be used
to adjust for characteristics of the input sequence, the characteristics of output
actuator devices, and estimate unmeasured internal variables.

Logic Control and Discrete Events

Programmable Logic Controller devices exemplify discrete control strategies with
limited state information. For example, if switch A is closed, take action B,
otherwise make no change.

Sequence control is not the specialty of Data Acquisition Processors. However,
the ability to apply actions in a flexible manner, that is not locked to a fixed
updating cycle, can be an advantage. Based on the current discrete state, the
appropriate processing code is selected and appropriate state variables will be

updated. Discrete states will typically be represented as a combination of state
data with associated processing sequences.

In the simplest case, the process coding maintains a state enumerator code and
selects processing according to the current value.

...
pipe_value_get(pPipe, &new_input);
switch (state_enum)
{

case STATE_1: ...
break;

case STATE_2:
new_out = apply_control(new_input, &state);
send_response(port, new_out);
task_switch();
state_enum = next_state(new_input, &state);
break;

case STATE_3: ...
break;

...
}

In the above sequence, the new input value is used to generate the output
response as quickly as possible. After that, the task voluntarily releases the
process control so that if there are any other high-priority control tasks that need
to respond quickly, they will have an opportunity to do so. At the next opportunity
to execute, the task updates its state information and prepares to process the
next event.

Continuous State and Updating

Internal dynamics of many complex systems are modelled by differential
equation systems in continuous variables. Mechanical systems are typically well
approximated by multi-variable linear differential equations. Other kinds of
systems, such as biological and chemical processes, usually require nonlinear
differential equation systems. When the sampling rate is sufficiently high, a
discrete-time approximation to the continuous equations performs well. A
separate numerical analysis can show that the equation system works correctly
with the sample interval chosen.

Critical-time processing will collect the most current measurements of input and
state variables and evaluate the output control rule equations using these
variables. Follow-up or lower-priority processing will use the current input and

output information and the differential equation system to determinethe next
control state.

Complex State and Subtasking

Complex control problems often involve "operating modes" with different control
objectives: seek a resting position, track a changing reference level, flush
reagent, vent steam for fast overpressure reduction, etc. These problems involve
a combination of discrete processing and also continuous state updates. Some
state variables will be maintained at all times, and others become relevant only
for certain operating modes. Keeping track of this complexity will typically force
the sequencing logic to be defined in one processing command. A dispatcher
section is activated for each input sample, and it selects appropriate processing
based on current state information. The more complex the control scheme, the
more difficult it will be to partition into simpler independent processing
commands.

Systems with a complex state are often associated with complex data
representations. As much as you can, you must avoid navigating through
complex data structures in the critical response sequences. For example,
suppose that the arrival of the next cyclic scheduling event will mean that it is
time to check the process limits on a level sensor. What are the limit levels for
this sensor? To determine this, you need to use the device identification to locate
the setting in the limits table. How do you tell which conversion gains to use for
this sensor's readings? You need to index the device's calibration settings in the
calibration table. If a limit is reached, what output signal receives notification?
The response option is located in the response options table, and from the
response option, you can locate the entry point for the limit-handling process.
There is nothing wrong with any of this, but indexing through the data structures
can result in swapping data in and out of the processor cache, which in itself can
mean a factor of 10 increase in processing time.

To avoid spending this data management time during critical response intervals,
you can borrow a strategy from database systems. In database systems, going
through all of the data tables in response to each query can result in very poor
response time. If it is known that a type of query will occur, the access to the data
can be pre-packaged into a view, something like an artist's palette, with just the
bits that are currently needed. More specifically for control systems, a temporary
data record can be prepared with just the information needed for the service of
the next event. After the response is issued, the consistency between the
temporary structure and the main data structures can be restored, and
preparations made for the next update.

Measurement and Observation
Data Acquisition Processors are natural tools for acquiring data and applying
pre-processing operations necessary for the best measurement quality. This
processing can include statistical reduction, such as averaging or filtering, or
advanced estimation techniques for deriving information that is not directly
measured.

Oversampling, Conditioning, and Calibration

When using filtering for noise reduction and anti-aliasing, it is a common practice
to capture samples at a higher rate, then reduce the rate by decimation after
filtering is applied. Most, or perhaps all, of the high frequency signal sources that
might corrupt the control loop data are represented accurately at the high
sampling rate, and filtering of the digital signal reduces or removes them.

There is little additional timing uncertainty introduced to Data Acquisition
Processor processing when the filtering is used. The time to access one value or
to access a data block is not much different. There is an additional task to
perform the filtering, however, and the scheduling of this task will cause a
predictable delay of about 10 microseconds, plus the time for a pipe operation, in
addition to increased processing time.

Calibration is an attempt to correct for persistent differences between expected
device performance and actual measurements, based on certain reference
conditions such as constant known input. Calibration is often applied to
"linearize" signals from sensors, adjust for gain variations, and cancel constant
offsets. Some calibration tests can be programmed and applied automatically as
part of the lower-priority processing and filtering.

State Observers

It is sometimes very difficult or very expensive to completely measure all
potentially relevant system variables. Sometimes the relationship is relatively
simple: for example, if you have the complete position history of an actuator
device, you can derive a quite good velocity history as well. Even simple
controllers such as PID will estimate the derivative of the observed signal as part
of its strategy.

When the controlled system is observable, and a good dynamic model of the
plant is known, in theory it is possible to reconstruct the complete state given a
fixed number of values from the input/output history. In practice, noise will disrupt
this process, so the estimates of unobserved state variables are not perfect. Still,

a good estimate can be useful, and much less expensive than complex
instrumentation.

Output and Actuators
Actuator devices sometimes have their own important characteristics and
dynamic states. In some instances it is useful to compensate for these
characteristics using an independent level of control processing.

Actuators can be treated almost as separate control problems. The time-critical
part generates the compensated drive signal after receiving the command level
from the control algorithm. At a lower priority, analysis of state and nonlinearities
determines how to respond the next time.

Control Strategies
There are many different control strategies. We can list a few examples here and
relate them to the implementation strategies previously described.

Model-Free

Model-free controllers use various linear or nonlinear mappings from input values
and state values without explicitly representing a system model. The most
common is PID control. Some generalized mapping controllers such as neural
networks are in this class.

Unless there are unusual requirements for very high rate updates, diligent
monitoring, large numbers of channels, etc., Data Acquisition Processors are
usually not the first choice for the simple and conventional model-free
approaches such as PID. It is not unusual, however, that slight variations are
required, and, while these can be difficult to implement on other platforms, they
are almost trivial with DAPL processing commands.

Model-Based

Model-based controllers have control laws with special structures matched to the
properties of the system at design time. On the theory that there is a better
chance of controlling a known system than an unknown one, a custom-matched
controller design should work better than a "generic black box" solution. The cost
is primarily in the engineering analysis. The resulting control law, in whatever its
special form, is typically not much more difficult to apply than PID control.

Model-Reference

Certain strategies for complex systems incorporate a simulation (sometimes
reduced order) that explicitly represents the system, and then bases control
action on a comparison between the simulated and actual system response to
observed inputs. The simulation can also be used to project future effects of
present-time control decisions. There is a close relationship to state observer
methods. The time-critical control rule for using the state information is usually
very simple in comparison to the background evaluation of the model. Obtaining
a useful system model is not an easy problem in general.

Adaptive

For systems with known form but poorly known parameter values, or systems
that have properties that change over time, numerical techniques for estimating
parameters dynamically are well known. These computations can require a lot of
processing over an extended time, but with no urgency and no real-time
deadlines. Lower-priority processing tasks in the DAPL system work well for this.

Adaptive controllers are a complement to model-reference and observer-based
controllers. Those controllers presume that a discrepancy between the observed
output and the model is due to a disturbed state that must be corrected. Adaptive
controllers, on the other hand, presume that discrepancies in the observed output
are due to deficiencies in the model, and that better model parameters will
produce improved performance in the future. Model-free controllers can use a
direct-adaptive approach, adjusting gains and other control parameters directly in
an attempt to improve control performance without reference to an explicit model,
but the effects of controller parameters can be difficult or impossible to
distinguish from unknown system parameters in a closed loop configuration, so
proving convergence can be difficult.

Noisy Systems

For systems in which signal measurements have a large amount of noise, the
control strategy can take variability of the measurements and resultant variability
in state estimates into account. Optimal controllers based on the classic Kalman
Filter and the Extended Kalman Filter are of this class. These designs iteratively
solve a separate, explicit model of random noise processes and use that to guide
state estimate correction. Noise increases the difficulty of obtaining suitable
models and limits applicability.

Contrary to the popular myth, these controllers typically are not adaptive. The
state is adjusted, but the model parameters are not. Kalman filtering techniques

can be used in combination with adaptive methods, but that is relatively
uncommon.

Both the state update and the state correction update require matrix
mathematics. A considerable amount of processing power is required. The
floating point hardware support provided by a Data Acquisition Processor main
processor chip is very helpful for this.

Feedforward

Given a desired system output trajectory, pre-processing of a command signal
can be very effective in driving a system along that trajectory with minimum
excitation of undesirable oscillatory modes. DAPL processing tasks are
particularly good at this kind of processing.

A weakness of feedforward controls is that they cannot see the effects of
disturbances, so they typically must be used in combination with stabilization and
feedback correction controls. That combination can be more effective than
feedback controls alone.

Nonlinear

Every system is nonlinear to some degree, and many optimal controllers are
nonlinear. Nonlinear control strategies can be used to compensate for system
nonlinearities. Even when the system is linear, a nonlinear control strategy can
be applied to improve performance.

As an example of nonlinearity in a system, thermal leakage flow in a refrigeration
system is one directional and varying, from a warmer ambient environment into
the refrigerated chamber. To make the refrigerated temperature colder takes
effort to overcome the thermal leakage, whereas thermal leakage can raise the
temperature by itself if no action is taken. A controller that responds unequally to
colder and warmer temperature deviations can compensate for the imbalance,
improving regulation.

An example of nonlinear control of linear systems is the "California Driver"
strategy. To reach a destination as quickly as possible, stomp on the fuel pedal
until the last possible instant, at which time you stomp down on the brake and
bring the vehicle to a halt exactly at the destination. As harrowing as the strategy
might be, it works. You will spend the least time accelerating and also the least
time decelerating, so you arrive as quickly as possible. In contrast, a PID control
policy would gradually remove fuel or braking action as the distance to the
destination decreased, allowing the vehicle to drift gradually to the final
destination, but taking more time. A mixed strategy can be applied, but the
mixing process is itself a kind of nonlinearity.

Fuzzy Controls

Control problems that have multiple operating regimes can sometimes use the
fuzzy control formalism to apply relatively simple control strategies in
combination, with the relative "membership" of fuzzy decision variables
determining the mix of actions to apply.

While very general, fuzzy systems require additional mappings to convert from
measurement to internal variables, and from internal variables to outputs. Fuzzy
rules have the property of always applying, but to a lesser or greater degree, so
every possible action is considered all of the time, possibly contributing zero to
the result. Consequently, the extreme generality of fuzzy control comes at a
significant cost.

If you have multiple fuzzy control commands, combining the commands in a
single downloadable module allows them to share the fuzzy inference engine
code, but not the rule sets or state. Each task will instantiate its own independent
rule base and evaluation state.

Tuning and Monitoring
Most controls are self-contained units. Most settings must be applied physically
at the device location. With Data Acquisition Processors, evaluating and
adjusting settings is a software function, so the Data Acquisition Processor can
assist with the measurement, application, and configuration management. The
actual monitoring can be done at the local station or controlled from a remote
location. While tuning and monitoring are not central to the real-time control
problem, they can be central to the problem of controlling operating costs.

Passive Observation and Logging

Is the loop alive? Is the loop processing normally? Is the loop processing at a
sub-optimal level?

Along with control responses in real time, Data Acquisition Processors can
collect, reduce, summarize, and deliver summary data to the host system or a
remote host to analyze and log. This does not take much computation, and Data
Acquisition Processors can organize the data collection without much effect on
the time-critical processing. Apply one DAP to multiple channels, with both
control and process monitoring, and suddenly this begins to look like a significant
cost improvement.

The software support for Data Acquisition Processor operation transparently
includes networking support. Provided that you have communications channels

available, a local processing node can transfer observed data to another location
for recording, display, or interactive analysis.

Opportunistic Self-Testing

When using model-reference processing, unexpectedly large differences
between what the model predicts and what the system actually does can indicate
that something in the system has changed and needs attention.

There is not much that can be learned while a loop sits at a regulated level with
no disturbance, but response to disturbances can provide a lot of good
information. Processing can be configured to identify disturbance events and
apply special analysis or actions when these occur.

Self Testing with Active Injection

While a controller holds a loop at a regulated level, it is possible for conditions in
the system to change so that the control settings are no longer close to optimal,
and stability may be compromised. Instead of waiting for disturbances to occur,
and discovering too late that the system is in trouble, it is possible to inject a
small disturbance deliberately. The injection of the disturbance signal into the
control output is part of the time-critical processing, and must be integrated with
the control loop update. Preparation of the injection signal can be coordinated by
a lower priority process. Tests can be initiated periodically, under local control or
at the request of higher control levels.

Where the system is sufficiently linear, an injection experiment can be a small
disturbance of short duration, riding on top of the normal command level.
Superimposition principles can be applied to isolate the disturbance's dynamic
response from the static operating level, yielding information about open and
closed loop characteristics. It is not necessary to remove the loop from active
service for the purposes of this testing, and the testing activity can be controlled
remotely.

Fail-Safe Monitoring and Recovery

If devices have failed, the process most likely needs an orderly shutdown. This
kind of processing is typically enforced by a watchdog timer. Watchdog timers
require very little processing, but when they do activate, their actions should be
delivered at a high priority so that they are not unduly delayed by routine data
processing.

To use watchdog monitoring, an independent task can watch a data source. The
task requests a task_pause interval, using the DAPL system timer. While

inactive, the task causes no scheduling delays. When the task next executes, it
expects a non-zero code. If it sees one, all is well. It discards or clears the value,
then activates the next task_pause interval. But if it fails to see the expected
value, there must be a fault because otherwise a sending task would have
provided a timely update.

Fault indications will sometimes require signal channels separate from ordinary
data logging. They can be hardware devices such as digital outputs, but they can
also be messages sent on a communication channel. In Data Acquisition
Processor systems, these communication channels are "virtual" in the sense that
the actual channels pass through the same physical network medium as any
other data transfers.

Special Applications
This section mentions a few examples of applications with characteristics that
make them particularly challenging, yet not terribly difficult for a Data Acquisition
Processor.

Distributed Process Control

For large scale systems, it is important to subdivide the plant control objective
into subproblems that can be addressed individually at local processing nodes.
At these local processing nodes, the host software can further distribute the
controller commands to multiple Data Acquisition Processors, each controlling a
cluster of control channels.

It is unusual to find an architecture that can scale up to manage many control
channels almost without limit. DAP processing actually gets more efficient when
supporting arrays of samples rather than just one, yet each channel can have an
independently adjusted configuration.

Hydraulics

Advanced hydraulics controls such as shaker table actuators drive high forces
and respond over a frequency band much too wide for most ordinary controllers.
The hydraulics systems have multiple servo stages, with nonlinear seal friction
effects and a tendency to "ring" at around 5 to 15 Hz. Having the speed of a DAP
system for sampling intervals of 1 millisecond or shorter is important for
controlling these systems to full bandwidth. DAPs have the processing power to
implement effective nonlinear control methods with multi-variable feedback.

Spatially Distributed Processes

Processes that are physically distributed, such as a rolling mill, drying conveyor,
or distillation column, need arrays of sensors, and they must operate arrays of
control devices. Decisions made early in the process propagate through the
system and directly affect downline decisions, while requirements of downline
processing can feed back to influence the process decisions at the start of the
line. A control strategy will involve timed and coordinated actions. Data
acquisition processors can provide effective measurement and management of
multiple-channel data, the ability to schedule delayed actions, and packaging of
local and global processing levels as different tasks.

Conclusions
We have seen that Data Acquisition Processors offer a fixed architecture solution
that, while originally intended for classic data acquisition, also has application for
advanced control systems. The fixed architecture means that the hardware
development problems are reduced to establishing and configuring good
interconnections. The software problem is reduced primarily to implementation of
the control strategy, with concerns about the distribution of critical and
non-critical processing times. The disadvantage is that you must cope with some
unavoidable timing delays that are always present, along with some additional
delays that your control processing will introduce. The net delay depends on the
amount of data traffic and the competition for processor time. If processes can be
merged to perform similar processing on multiple channels in parallel by one
task, the delay times are not much different from the delay times for one channel
alone.

Real-time response depends on being fast enough, not just on being fast. We
have consistently discussed worst-case timing and meeting response deadlines
under loaded operating conditions. Much of what is called "real time on your PC"
is in fact concurrent processing with unspecified delays that can be a factor of
100 to 1000 longer than delays that you might typically experience on a Data
Acquisition Processor. The Data Acquisition Processor is not a replacement for a
workstation system but rather an extension to it. Even so, there are limits, and
response times of Data Acquisition Processors are either sufficient for the
application or they aren't. If you can't meet the real-time deadlines, the platform
isn't the right one and you will have to consider a higher performance, higher
complexity solution.

Data Acquisition Processors are best suited for those applications with special
requirements for operating speed, multiple channels, novel or complex control
algorithms, or supporting computations. What seems like an expensive solution
at first, after applying the solution to multiple channels and incorporating

important monitoring, testing, and logging features, can turn out to be a very
competitive solution. The flexibility of the high-level development environment
that does not require complex and specialized embedded system tools means a
low-cost infrastructure for supporting development. Effort can be concentrated on
the control problem, rather than on making the hardware components work
together. Methods that might ordinarily be unsupportable can become feasible,
opening a new range of opportunities for process improvements and long-term
cost savings.

Copyright (c) 2007, Microstar Laboratories, Inc.
All rights reserved.

Microstar Laboratories, Data Acquisition Processor, DAP, DAP 840, DAP 4000a, DAP 5000a, DAP 5016a, DAP 5200a, DAP 5216a, DAP
5380a, DAP 5400a, iDSC 1816, DAPcell, DAPserver, Accel, Accel32, DAPL, DAPL 2000, DAP Measurement Studio, DAPstudio, DAPcal,
DAPlog, DAPview, and Channel List Clocking are trademarks of Microstar Laboratories, Inc.

This document presents proprietary information regarding Microstar Laboratories products. The information is provided "AS IS" and may be
subject to change without notice. You are granted no intellectual property rights in the information nor in the products. Microstar
Laboratories ASSUMES NO LIABILITY WHATSOEVER, AND DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
INFORMATION PRESENTED, WITH OR WITHOUT USE OF MICROSTAR LABORATORIES PRODUCTS. Microstar Laboratories
MAKES NO CLAIMS OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Any performance specifications were determined in a controlled environment, dependent on component parts that are themselves subject
to unannounced specification changes by their respective manufacturers. Actual results may vary. Performance information is provided "AS
IS" with no warranties or guarantees expressed or implied by Microstar Laboratories regarding suitability of the information for determining
actual performance for any specific application.

Microstar Laboratories products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in
nuclear facility applications.

Other names and brands may have claims as property of others. Microstar Laboratories is not responsible for the performance or support of
third-party products mentioned in this document, and does not make any representations or warranties whatsoever regarding these devices
or products.

	Implementing Automatic Controls Using Data Acquisition Processor Boards
	Contents
	Applicability
	The Role of Architecture
	The Role of Processing
	Timing and Regularity
	Sampling and Bandwidth
	Pipelining Delays
	Task Scheduling Delays

	Time Delay Benchmarks
	Multitasking Control
	Representing State
	Logic Control and Discrete Events
	Continuous State and Updating
	Complex State and Subtasking

	Measurement and Observation
	Oversampling, Conditioning, and Calibration
	State Observers

	Output and Actuators
	Control Strategies
	Model-Free
	Model-Based
	Model-Reference
	Adaptive
	Noisy Systems
	Feedforward
	Nonlinear
	Fuzzy Controls

	Tuning and Monitoring
	Passive Observation and Logging
	Opportunistic Self-Testing
	Self Testing with Active Injection
	Fail-Safe Monitoring and Recovery

	Special Applications
	Distributed Process Control
	Hydraulics
	Spatially Distributed Processes

	Conclusions

